On Products of Harmonic Forms

نویسنده

  • D. KOTSCHICK
چکیده

We prove that manifolds admitting a Riemannian metric for which products of harmonic forms are harmonic satisfy strong topological restrictions, some of which are akin to properties of flat manifolds. Others are more subtle, and are related to symplectic geometry and Seiberg-Witten theory. We also prove that a manifold admits a metric with harmonic forms whose product is not harmonic if and only if it is not a rational homology sphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost holomorphic Poincaré series corresponding to products of harmonic Siegel–Maass forms

We investigate Poincaré series, where we average products of terms of Fourier series of real-analytic Siegel modular forms. There are some (trivial) special cases for which the products of terms of Fourier series of elliptic modular forms and harmonic Maass forms are almost holomorphic, in which case the corresponding Poincaré series are almost holomorphic as well. In general, this is not the c...

متن کامل

Differential Operators for Harmonic Weak Maass Forms and the Vanishing of Hecke Eigenvalues

For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms are expected to have transcendental coefficients, we...

متن کامل

Differential Operators and Harmonic Weak Maass Forms

For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms have transcendental coefficients, we show that those...

متن کامل

Coefficients of Harmonic Maass Forms

Harmonic Maass forms have recently been related to many different topics in number theory: Ramanujan’s mock theta functions, Dyson’s rank generating functions, Borcherds products, and central values and derivatives of quadratic twists of modular L-functions. Motivated by these connections, we obtain exact formulas for the coefficients of harmonic Maass forms of non-positive weight, and we obtai...

متن کامل

On Formality of Generalised Symmetric Spaces

We prove that all generalised symmetric spaces of compact simple Lie groups are formal in the sense of Sullivan. Nevertheless, many of them, including all the non-symmetric flag manifolds, do not admit Riemannian metrics for which all products of harmonic forms are harmonic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001